Solvent-dependent structure of molecular iodine probed by picosecond X-ray solution scattering.

نویسندگان

  • Kyung Hwan Kim
  • Hosung Ki
  • Jae Hyuk Lee
  • Sungjun Park
  • Qingyu Kong
  • Jeongho Kim
  • Joonghan Kim
  • Michael Wulff
  • Hyotcherl Ihee
چکیده

The effect of solute-solvent interaction on molecular structure and reaction dynamics has been a target of intense studies in solution-phase chemistry, but it is often challenging to characterize the subtle effect of solute-solvent interaction even for the simplest diatomic molecules. Since the I2 molecule has only one structural parameter and exhibits solvatochromism, it is a good model system for investigating the solvent dependence of the solute structure. By using X-rays as a probe, time-resolved X-ray liquidography (TRXL) can directly elucidate the structures of reacting molecules in solution and can thus determine the solvent-dependent structural change with atomic resolution. Here, by applying TRXL, we characterized the molecular structure of I2 in methanol and cyclohexane with sub-angstrom accuracy. Specifically, we found that the I-I bond length of I2 is longer in the polar solvent (methanol) by ∼0.2 Å than in nonpolar solvents (cyclohexane and CCl4). Density functional theory (DFT) using 22 explicit methanol molecules well reproduces the longer I-I bond of molecular iodine in methanol and reveals that the larger bond length originates from partial negative charge filled in an antibonding σ* orbital through solvent-to-solute charge transfer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topical Review: Molecular reaction and solvation visualized by time-resolved X-ray solution scattering: Structure, dynamics, and their solvent dependence

Time-resolved X-ray solution scattering is sensitive to global molecular structure and can track the dynamics of chemical reactions. In this article, we review our recent studies on triiodide ion (I3 (-)) and molecular iodine (I2) in solution. For I3 (-), we elucidated the excitation wavelength-dependent photochemistry and the solvent-dependent ground-state structure. For I2, by combining time-...

متن کامل

Visualizing chemical reactions in solution by picosecond x-ray diffraction.

We present a time-resolved x-ray diffraction study to monitor the recombination of laser-dissociated iodine molecules dissolved in CCl4. The change in structure of iodine is followed during the whole recombination process. The deexcitation of solute molecules produces a heating of the solvent and induces tiny changes in its structure. The variations in the distance between pairs of chlorine ato...

متن کامل

Visualizing photochemical dynamics in solution through picosecond x-ray scattering.

A photoexcited state of molecular iodine in solution is observed using diffuse x-ray scattering at a synchrotron source. The measured changes in the diffuse scattering profile were consistent with earlier models of iodine's photodissociation and geminate recombination reaction, for which the recombined A/A(') state has a 0.4 A greater interatomic spacing than the resting state and has a lifetim...

متن کامل

Application of small angle X-ray scattering (SAXS) for differentiation between normal and cancerous breast tissues

ABSTRACT Background: Coherent scattering leads to diffraction effects and especially constructive interferences. Theseinterferences carry some information about the molecular structure of the tissue. As breast cancer isthe most widespread cancer in women, this project evaluated the application of small angleX-ray scattering (SAXS) for differentiation between normal and cancerous breast tissues....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 14  شماره 

صفحات  -

تاریخ انتشار 2015